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Stochastic Calculus (Rémi Catellier) 

The course "Stochastic Calculus and Applications" is designed to provide students with a 
deep understanding of stochastic processes, with a focus on both theoretical foundations 
and practical applications. Key topics include Brownian motion, a fundamental stochastic 
process that models random behavior in various contexts, and continuous-time 
martingales, which are essential for understanding fair game-like properties in financial 
mathematics. The course also covers the stochastic integral, a tool used to model systems 
influenced by random noise, as well as stochastic differential equations (SDEs), which 
allow the modeling of dynamic systems affected by randomness.

In addition to the theoretical framework, the course explores a variety of real-world 
applications. For instance, stochastic methods are widely used in machine learning for 
optimization and in the pricing of derivative products in financial markets. Furthermore, 
stochastic models play a crucial role in biological systems, such as in population dynamics 
and the spread of diseases. By bridging theory with applications, this course equips 
students with the skills to apply stochastic calculus in a broad range of domains.

Numerical Methods in Probability (Sylvain 
Rubenthaler)  

• This course addresses the basic methods used for simulating random variables and 
implementing Monte-Carlo and Quasi Monte-Carlo methods.

• Simulation of stochastic processes used in mathematical finance, such as Brownian 
motion and solutions to stochastic differential equations, will be addressed.

• The course will introduce sampling methods in finite dimensions, discretization of 
diffusion processes, strong and weak errors.



Advanced Stochastics (François Delarue) 

This course follows the course on stochastic calculus given by Prof. Catellier. The purpose 
is to push the analysis further and in particular to address three main questions that artery 
frequent in probability theory and related modelling: 

• Long time behaviour of time homogeneous stochastic differential equations. Here the 
objective is to find some conditions under which the stochastic differential equation has 
a unique invariant measure to which the solution converges in long time. 

• Stochastic differential equations in very high dimension. In this example, we address 
an example of a stochastic differential equation in very high dimension in which 
coordinates interact with one another in a weak manner. We show that there is a limit 
regime when the number of coordinates tends to infinity. This regime is known as 
`mean-field’.

• Control theory. We study a class of controlled stochastic differential equations. The 
purpose is to find a systematic procedure to find the best possible control in order to 
minimise some energy (or cost).  

Statistical learning with and on graphs 
(Marco Corneli)  
 

After a quick refresher about maximum likelihood inference, with application to linear and logistic 
regression, the course will focus on graphical models, in particular on directed a-cyclic graphs 
(DAGs). A chapter about mixture models will follow, illustrating their relation with data clustering 
and the expectation maximization (EM) algorithm will be presented and discussed in detail. Then, 
we will attack the topic of generative models for random graphs and their application to the clus- 
tering of the nodes of a graph. Variational inference for stochastic block models will be discussed in 
detail. A last chapter is about graph neural networks and their use for supervised learning tasks at 
the instance level. 

Each topic will be first discussed in detail from a theoretical point of view. Then, its application will 
be illustrated by means of Python notebooks or R markdowns (the student will become familiar 
with known machine learning libraries). 

Some teaching material will be provided by the teacher. Additional useful references are 

• Wasserman, L. All of Statistics: a Concise Course in Statistical Inference, Springer, 2013. 
[Chapters 9,13,16,17]. 

• Bishop, Christopher M. Pattern recognition and machine learning, Springer, 2006. 
[Chapters 3,4,8].

• Bishop, Christopher M., and Hugh Bishop. Deep learning: Foundations and concepts, 
Springer Nature, 2023. [Chapter 13]  



• Daudin, J-J., Franck Picard, and Stéphane Robin. A mixture model for random graphs. 
Statistics and computing 18.2 (2008): 173-183.  

Geometric Statistics (Khazhgali Kozhasov)
Statistical concepts like principal component analysis, (empirical) mean or covariance 
(matrix) are inherent to data and probability distributions living in linear spaces. 
Geometric statistics aims at providing tools for analysing data that populate (possibly) 
non-linear spaces such as manifolds. As the notion of metric is essential for this goal, 
Riemannian geometry provides a solid ground for the theory. In the course we are going 
to introduce necessary geometric results, give essentials on probability distributions and 
then discuss “nonlinear” generalizations of some classical concepts from statistics. The 
exposition will be accompanied by numerous examples with a view towards applications. 
Familiarity with calculus on manifolds or basic differential geometry is recommended.
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[5] Introduction to Riemannian Geometry and Geometric Statistics: from basic theory to 
implementation with Geomstats, N. Guigui, N. Miolane and X. Pennec, Foundations and 
Trends in Machine Learning, 2023


