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A B S T R A C T

The distribution of marine organisms is strongly influenced by climatic gradients worldwide. The ecological
niche (sensu Hutchinson) of a species, i.e. the combination of environmental tolerances and resources required by
an organism, interacts with the environment to determine its geographical range. This duality between niche and
distribution allows climate change biologists to model potential species’ distributions from past to future con-
ditions. While species distribution models (SDMs) have been intensively used over the last years, no consensual
framework to parametrise, calibrate and evaluate models has emerged. Here, to model the contemporary
(1990–2017) spatial distribution of seven highly harvested European small pelagic fish species, we implemented
a comprehensive and replicable numerical procedure based on 8 SDMs (7 from the Biomod2 framework plus the
NPPEN model). This procedure considers critical issues in species distribution modelling such as sampling bias,
pseudo-absence selection, model evaluation and uncertainty quantification respectively through (i) an en-
vironmental filtration of observation data, (ii) a convex hull based pseudo-absence selection, (iii) a multi-criteria
evaluation of model outputs and (iv) an ensemble modelling approach. By mitigating environmental sampling
bias in observation data and by identifying the most ecologically relevant predictors, our framework helps to
improve the modelling of fish species’ environmental suitability. Not only average temperature, but also tem-
perature variability appears as major factors driving small pelagic fish distribution, and areas of highest en-
vironmental suitability were found along the north-western Mediterranean coasts, the Bay of Biscay and the
North Sea. We demonstrate in this study that the use of appropriate data pre-processing techniques, an often-
overlooked step in modelling, increase model predictive performance, strengthening our confidence in the re-
liability of predictions.

1. Introduction

Fish species distribution and assemblages are strongly influenced by
both climatic and physical gradients (Ben Rais Lasram et al., 2010;
Beaugrand et al., 2011; Raybaud et al., 2017). Temperature is known as
a master parameter driving fish distribution at a macroecological level
(Lenoir et al., 2011; Beaugrand et al., 2018). This parameter influences
a large range of biological processes such as growth, reproduction,
larval development, recruitment, and act as a major stressing factor
depending on species thermal tolerance (psychrophile or thermophile

species; Angilletta, 2011; Beaugrand and Kirby, 2018). Salinity, oxygen
concentration, primary production (that are indirectly influenced by
changes in temperature; e.g. Kirby and Beaugrand, 2009) or the phy-
sical habitat (e.g. sediment type; Poloczanska et al., 2013) may also
highly influence marine fish species at different spatial scales.

Hutchinson (1957) conceptualised the ecological niche as the “n-
dimensional ensemble of environmental conditions that enable a spe-
cies to live and reproduce” and subsequently made a distinction be-
tween the fundamental and the realised niche (Hutchinson, 1978). Due
to biotic interactions, dispersal limitation and/or historical factors
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(Soberon and Peterson, 2005), species generally occupy only their
realised niche, i.e. the subset of their fundamental niche that represents
the response of all physiological processes of a species to the synergistic
effects of environmental conditions (Helaouet and Beaugrand, 2009;
Beaugrand et al., 2013). By defining the niche as an attribute of species
instead of a portion of the environment, the Hutchinson’s concept en-
ables duality between niche and distribution (Pulliam, 2000; Colwell
and Rangel, 2009). Such a relationship is of major interest in biogeo-
graphy as each georeferenced species occurrence, i.e. where a given
species has been observed, can be related to several environmental
parameters such as temperature, salinity and primary production.
When species are in equilibrium with their environment, associating
environmental conditions and observed distributions permits climate
change biologists to estimate species’ potential niche (Jiménez-
Valverde et al., 2008).

The relationship between species occurrences, environmental con-
ditions and species’ potential niche has become intensively studied over
the last two decades, using a wide range of modelling techniques -
hereafter referred to as Species Distribution Models (SDMs) to assess
past, contemporary and future species distribution in both marine and
terrestrial ecosystems (e.g. Cheung et al., 2009; Bellard et al., 2016;
Cristofari et al., 2018). SDMs rely on several ecological assumptions,
such as species distribution in equilibrium or habitat saturation
(Soberon and Peterson, 2005), niche conservatism (Crisp et al., 2009),
unlimited dispersal abilities (Wiens et al., 2009) or the non-influential
role of biotic interactions in shaping large-scale distributions (i.e. the
Gleasonian vision of biotic communities; Gleason, 1926; Guisan and
Thuiller, 2005; Wiens et al., 2009). Superimposed to these assumptions,
several sources of errors and uncertainties may lead to variation –
sometimes conflicting – in the outputs of SDMs for a given species
(Beaumont et al., 2008): (i) accuracy of observation data and (ii) lack of
true absences (Proosdij et al., 2016), (iii) identification of ecologically
meaningful environmental predictors with high explanatory power
(Guisan and Thuiller, 2005), (iv) choice of the modelling algorithm
(Buisson et al., 2010) and (v) SDMs’ evaluation processes (Leroy et al.,
2018). While tremendous progresses have been made on both the
building and evaluation of SDMs in recent years with a plethora of new
methods for modelling species’ distribution (Araújo and Guisan, 2006;
Leroy et al., 2018; Støa et al., 2018), the development of further pro-
cedures is still required for improving the quality of SDMs.

Species distribution models are known to be very sensitive to dif-
ferent sources of uncertainties and sustained attention should be de-
voted to each step of the modelling procedure, from the pre-processing
of species occurrences data to model evaluation. Such an approach is
essential to increase confidence in model outputs (Porfirio et al., 2014):
for most areas of the world and species, survey effort often exhibits
strong spatial and temporal bias, occurrence records being frequently
too scarce, constrained to presence-only data or both. Working with
biased observation datasets may result in under- or over-estimated
species distributional ranges (Araújo and Guisan, 2006; Dormann et al.,
2007), leading therefore to inaccurate modelled contemporary dis-
tributions, which are inadequate for assessing potential future range
shifts or for defining conservation measures. Similarly, biased pseudo-
absence datasets (e.g. multiple pseudo-absences selected in the same
environmental conditions or coinciding with environmental conditions
where the species is observed) may lead to a distorted estimation of
species distributional ranges (e.g. Wisz and Guisan, 2009; Lobo and
Tognelli, 2011). A modelling framework that includes a preliminary
stage devoted to the construction of a representative calibration dataset
– as well as its associated level of uncertainty assessment – is therefore
essential (e.g. Varela et al., 2014).

Here, we developed a framework that encompasses recent advances
on the building, calibration and evaluation of SDMs with the aim of (i)
selecting the most relevant environmental parameters, (ii) generating
consistent pseudo-absence data and (iii) validating representative
model outputs (Cornwell et al., 2004; Varela et al., 2014; Leroy et al.,

2018).
We applied this framework on seven economically important

European Small Pelagic Fish (SPF) species (Mediterranean horse
mackerel Trachurus mediterraneus, Atlantic horse mackerel Trachurus
trachurus, European pilchard Sardina pilchardus, round sardinella
Sardinella aurita, European sprat Sprattus sprattus, European Anchovy
Engraulis encrasicolus and bogue Boops boops). These seven SPF species
are widely distributed planktonic feeders known for their central role in
marine food webs (Cury, 2000; Checkley et al., 2009). Moreover, they
are of major economic importance and represent a large part of the
Mediterranean and Black Sea commercial landings (more than 50 %
between 2000 and 2013; FAO, 2016). However, while SPFs are ideal
candidates for SDMs because of their sensitivity to environmental fac-
tors (Perry et al., 2005), their European distribution is far from being
exhaustively documented and available records originated from diverse
and/or non-standardised monitoring surveys (FAO, 2016).

2. Material and methods

2.1. Biological and environmental data

2.1.1. Small pelagic fish occurrence data
Occurrence records (e.g. fisheries independent trawl surveys, dis-

crete research samplings) for the seven SPF species (Mediterranean
horse mackerel, Atlantic horse mackerel, European pilchard, round
sardinella, European sprat, European Anchovy and Bogue) were com-
piled from three available public databases: the Ocean Biogeographic
Information System Mapper (OBIS, http://www.iobis.org/mapper/),
the Global Biodiversity Information Facility (GBIF, https://www.gbif.
org/) and Fishbase (http://www.fishbase.org/). When possible, we in-
cluded observations retrieved from the literature to construct the most
up-to-date datasets encompassing their entire distribution range (see
Supplementary material 1). Biological data retrieved for our study
ranged from 1950 to 2017, recent records (since 1990) prevailing
(83.2±6.7 %) over both past (1950–1990; 12.2±8.7 %) and undated
observations (4.6± 3.6 %). Past or undated records were only con-
sidered along the distribution edge when the species presence was
confirmed by recent records. This precautionary approach avoided
over- or under-predictions of the model due to low quality presence
data (Kramer‐Schadt et al., 2013). The observation records pre-pro-
cessing consisted in a data cleaning procedure applied on each species
dataset to (i) remove unreliable observations (e.g. preserved specimen;
Newbold, 2010) and false identifications (e.g. taxonomic confusion), (ii)
discard duplicate occurrences and (iii) ensure the temporal and loca-
tional reliability at the edge of the observed distribution (e.g. data on
land, longitudinal and/or latitudinal inversion, historical or undated
data). According to the ecology of SPFs – species cannot be observed
below 300 m depth (Checkley et al., 2009) – while remaining permis-
sive, a precautionary bathymetry threshold (−1000 m) was applied to
remove inconsistent occurrences. Following this pre-processing, we
obtained seven clean datasets, with a number of observations ranging
from 1314 (for Mediterranean horse mackerel) to 24,806 (for European
sprat). For the seven SPFs, occurrences were aggregated on a 0.1° ×
0.1° spatial grid (from 70 °N to 70 °S and 180 °E to 180 °W) that cor-
responds to that of environmental parameters.

2.1.2. Environmental data
To calculate the ecological niche (sensu Hutchinson, 1957) of each

SPF, we collected environmental parameters from different databases
(see Table 1 for details). Environmental parameters values for each
spatial grid cell were first calculated for each year and then averaged on
the 1990–2017 period. The environmental parameters presented in
Table 1 were retrieved in different spatial resolutions ranging from 0.1°
to 0.5°. For modelling purpose, all variables were therefore interpolated
to a 0.1° × 0.1° grid using a bilinear interpolation in the geographical
domain available for all environmental parameters, ranging from 70 °N
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to 70 °S and 180 °E to 180 °W.

2.2. Description of the models

We used two approaches to model the potential environmental
suitability (i.e. spatialised index between 0 and 1, defined as a prob-
ability of presence based on environmental parameters) of each SPF
species over the 1990–2017 period: (i) the Non-Parametric Probabilistic
Ecological Niche (NPPEN; Beaugrand et al., 2011) model and (ii) seven
modelling algorithms available within the BIOMOD2 package (Thuiller
et al., 2016). The NPPEN model is a presence only model based on the
Mahalanobis generalised distance (Mahalanobis, 1936) and on a mod-
ified version of the Multiple Response Permutation Procedure (MRPP;
Mielke et al., 1981). The BIOMOD2 framework allows ensemble mod-
elling of species distribution (i.e. an average model of a wide range of
algorithms; Thuiller et al., 2009). Here, seven algorithms were con-
sidered: (i) Generalised Linear Model (GLM), (ii) Generalised Additive
Model (GAM), (iii) Generalised Boosting Model (GBM), (iv) Artificial
Neural Network (ANN), (v) Flexible Discriminant Analysis (FDA), (vi)
Multiple Adaptive Regression Splines (MARS) and (vii) Random Forest
(RF). Because the models used in this study have been already described
and discussed in several publications (e.g. Beaugrand et al., 2011;
Lenoir et al., 2011; Raybaud et al., 2015 for NPPEN, e.g. Thuiller et al.,
2009; Albouy et al., 2012; Bellard et al., 2013 for BIOMOD2), we refer
the reader to this literature for further information. The algorithms
were calibrated using the default parameters in BIOMOD2, optimised
for species distribution modelling (details in Thuiller et al., 2016). By
including this large range of algorithms within an ensemble model
approach, we quantified the uncertainty related to the selection of
SDMs (Pearson et al., 2006; Buisson et al., 2010) by calculating the
standard deviation (SD) and the coefficient of variation (CV) among
SDM outputs.

2.3. Data preparation and ensemble model selection

2.3.1. Pre-selection of the environmental parameters and assessment of
multicollinearity

To model the ecological niche of the seven SPFs, we first constructed
the full dataset of environmental parameters based on our knowledge of
the ecology of SPFs. A variable selection process (Fig. 1, step 1) was
then applied to identify, at the species level, the most parsimonious
dataset that explained each species distribution. This process follows
the procedure described in Leroy et al. (2014) and Bellard et al. (2016).
Because most of the algorithms (especially regression-based models
such as GLM) are sensitive to multicollinearity – that may distort model
estimation (Dormann et al., 2013) – relations among environmental
parameters were assessed by means of the Pearson correlation

coefficient, using a threshold r> 0.7 to reduce the initial environ-
mental matrix. When two or more environmental parameters showed
correlation values above this threshold, only one variable was retained
(details in Supplementary material 2).

We subsequently assessed the relative importance of each environ-
mental parameter by sequentially randomising each variable and by
calculating the resulting current distribution (Leroy et al., 2014). The
variables that best predicted SPF distribution were sea surface tem-
perature annual mean (SST), temperature variability (sea surface tem-
perature annual range or monthly variance, depending on the targeted
species), bathymetry and distance to coast (see Supplementary material
2). In order to avoid model over-parameterisation (that affects model
performance, model transferability and assessment of variable im-
portance), we chose not to include bathymetry and distance to coast
directly in the models, but in a hierarchical filtering approach (Hattab
et al., 2014): for a given geographical cell, environmental conditions
were considered as suitable for a marine species only if a probability of
occurrence coincided with a distance to coast less than 50 km or up to a
300 m depth for oceanic cells, i.e. outside the 50 km wide coastal area.
Concerning environmental predictors, we systematically considered
temperature (mean and variability) in our models. Finally, we tested
the relevance of including sea surface salinity (SSS) and/or primary
production (log_PP) as a potential third explanatory environmental
parameter in the models. Each run is detailed in Supplementary ma-
terial 3.

2.3.2. Environmental filtration and pseudo-absence selection
Because sampling effort is neither homogeneous and nor standar-

dised over marine regions, occurrence data may not be representative
of the whole populations, a requirement to increase the reliability of
SDMs (Lobo and Tognelli, 2011). While under-sampling is commonly
observed at the edge of species range (Varela et al., 2014), observation
datasets can also be biased toward regions more comprehensively in-
vestigated due to an easy access or a long tradition of monitoring
(Fithian et al., 2015).

To consider the risk of over-sampling, and the ensuing over-re-
presentation of environmental features (Kramer‐Schadt et al., 2013),
we first homogenised species datasets to assign the same weight to
over- and under-sampled regions (Fig. 1, step 2). A multidimensional
matrix was designed for each species and each combination of en-
vironmental parameters, a dimension reflecting an environmental
factor. Each cell of the homogenised matrix was considered as an en-
vironmental stratum, i.e. a combination of a set of parameters, with the
following resolution: 0.5 °C for temperature-related parameters, 0.5 for
SSS and 0.5 mol.m−2.s–1 (in log) for primary production. In case an
environmental stratum contained multiple occurrences, only one oc-
currence (i.e. one 0.1° × 0.1° geographical cell with the corresponding

Table 1
Environmental parameters used to model SPF distribution.

Name (Period) Description Reference

Bathymetry Spatial seafloor depth (m) Global seafloor topography (Smith and Sandwell, 1997)
Distance to coast Distance to the nearest coast (km) NASA Goddard Space Flight Center (2009) (https://oceancolor.gsfc.nasa.gov/docs/

distfromcoast/)
SSS (1990–2017) Sea Surface Salinity Levitus’ climatology (Levitus, 2011) completed with (http://www.ices.dk/)
PP (1990–2017) Sea Surface Primary Production (mol. m−2.s−1). Averaged from

five general circulation models (IPSL, MPI, CNRM, HadGEM and
GISS).

IPSL (Dufresne et al., 2013; Hourdin et al., 2013), MPI (Stevens et al., 2013;
Giorgetta et al., 2013), CNRM (Voldoire et al., 2013), HadGEM (Jones et al., 2011)
and GISS (Schmidt et al., 2014) models.

Log_PP (1990–2017) Log10-transformed Sea Surface Primary Production
SST (1990–2017) Mean annual Sea Surface Temperature (°C) AVHRR Very High Resolution Radiometer (Casey et al., 2010)
SSTmax (1990–2017) Mean sea surface temperature of the hottest month (°C)
SSTmin (1990–2017) Mean sea surface temperature of the coldest month (°C)
SSTr (1990–2017) Mean annual sea surface temperature range (°C). Difference

between SSTmax and SSTmin.
SSTvar (1990–2017) Mean monthly sea surface temperature variance (°C). Calculated

using monthly SST data.
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environmental conditions) was kept in the homogenised dataset.
We also considered the lack of absence data. To assess this gap, we

generated pseudo-absences using the convex hull method (Cornwell
et al., 2004; Getz and Wilmers, 2006). The convex hull was defined here
as the smallest convex hyper-volume in the environmental space con-
taining all species observation records. A restricted convex hull (see
Fig. 2) has been defined as a convex hull excluding occurrence points
within the 2.5 % and 97.5 % percentiles for each environmental para-
meter (i.e. excluding observations in the most extreme environmental
conditions). This restricted convex hull is considered as a proxy of the
suitable environmental conditions outside which, pseudo-absences
were randomly generated in equal number to the filtered occurrences as
recommended by the “D-designs”theory (Montgomery, 2005): the op-
timal design to minimise prediction variance is when an equal number
of observations are at opposite value extremes (Montgomery, 2005;
Hengl et al., 2009) and when there is a high spreading in the feature
space. Finally, for each species, pseudo-absence were projected back in
geographical cells showing environmental conditions outside SPF spe-
cies’ environmentally favourable areas (Fig. 2; Varela et al., 2014).
Finally, model outputs obtained from our environmental filtration ap-
proach were compared with outputs for which neither environmental

filtration nor the convex hull pseudo-absence selection method was
applied (Fig. 3).

2.3.3. Validation and selection of the best models
We then quantified the performance of our models using five

commonly used evaluation metrics: (i) the Continuous Boyce Index
(CBI; Hirzel et al., 2006), a metric specifically designed for presence-
only models and insensitive to pseudo-absences, (ii) the Area Under the
Curve (AUC; Swets, 1988; Fielding and Bell, 1997), (iii) the True Skill
Statistic (TSS; Allouche et al., 2006), (iv) the Jaccard and (v) the
Sørensen similarity indices (Jaccard, 1908; Sørensen, 1948). However,
because all evaluation metrics – except the CBI – require both presence
and absence data (see discussion in Leroy et al., 2018 about the use of
pseudo-absence to evaluate the performance of models) and because
some may be affected by prevalence (i.e. the ratio between the number
of observed presence and generated pseudo-absence; Leroy et al., 2018)
we based our selection process of the best models on CBI values only.
We considered models to be wrong when CBI values were below -0.5,
“average to random” for values ranging from -0.5 to 0.5, and good for
values above 0.5 (Faillettaz et al., 2019).

For each model, we computed evaluation metrics by performing a

Fig. 1. Sketch diagram of the modelling framework applied to model SPFs species. “ENV.” = environmental parameters and “OBS.” = georeferenced presence data.
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Fig. 2. Example of pseudo-absences generation for the Mediterranean horse mackerel (environmental parameters = SST + SSTr, 1 °C resolution). A-C: Species
occurrences (black dots) in (A) the geographical domain and (C) the environmental space. B-D: Species occurrences (black dots) and pseudo-absences (red dots)
generated from the restricted convex hull method in (B) the geographical domain and (D) the environmental space (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article).

Fig. 3. Environmental suitability index and CBI differences between ensemble models originating from our modelling framework and ensemble models constructed
without data filtration and random pseudo-absence selection for (a) Atlantic horse mackerel, (b) European pilchard, (c) European sprat, (d) European anchovy, (e)
Mediterranean horse mackerel, (f) round sardinella and (g) bogue.
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cross-validation procedure with 10 repetitions. We randomly sampled
70 % of the occurrence data to calibrate the model and kept the re-
maining 30 % for model validation (Merow et al., 2013). Following the
“evaluation strip method” detailed by Elith et al. (2005), the adequacy
between observed and modelled spatial distributions was also assessed
by means of response curves. For a given environmental parameter, the
corresponding response curve was calculated, while keeping the other
parameters constant (i.e. at the mean value corresponding to their oc-
currence points). By doing this, we identified spurious results (e.g. we
do not expect bimodal responses to temperature) and/or unexpected
distribution ranges (e.g. large portions of predicted range in regions
where the species has never been observed, and vice-versa; Supple-
mentary material 4).

3. Results

3.1. SDMs and parameters selected in the ensemble models

Based on the calculation of the CBI values and the examination of
species response curves (Supplementary material 3 and 4), we identi-
fied the best models for each SPF species. Our results showed that both
GLM and NPPEN models were almost always selected in the ensemble
model, except for the European anchovy.

Ensemble models showed that temperature-related variables were
essential to assess the spatial distribution of SPFs’. For virtually all
species, the models that considered mean temperature and variability
showed high ability to reproduce the overall SPFs distributions
(Table 2, Supplementary material 3) with CBI values always above 0.5
(Faillettaz et al., 2019). However, some discrepancies were observed
among species. While Mediterranean horse mackerel, Atlantic horse
mackerel and European anchovy distributions were more related to
mean monthly temperature variance (SSTvar), European pilchard,
round sardinella, European Sprat and bogue distributions were better
reproduced when mean annual temperature range (SSTr) was con-
sidered. Despite the high correlation between SSTr and SSTvar (r =
0.80, Supplementary material 2), both variables have dissimilar

ecological influences (seasonality versus short-term climatic variability
respectively). Primary production also emerged as important to model
species’ spatial distribution. Finally, we highlighted the important role
of sea surface salinity (SSS) for both European pilchard and European
anchovy, by discriminating both the Baltic and the Black seas from
other regions (Table 2).

By applying our environmental filtration framework, we sub-
stantially improved the modelling of most of the SPFs spatial distribu-
tions (Fig. 3, individual contributions of the filtration process and the
convexhull are presented in Supplementary material 5), except for the
European pilchard (Fig. 3b). Specifically, we observed an increase in
mean CBI values that ranged from +0.05 to +0.23 (Fig. 3). For most
SPFs, lower Environmental Suitability Index (ESI) values were obtained
(-0.2 without filtration to –0.6 with filtration), suggesting that our
procedure alleviated the risk of over-prediction, especially in the Black
and Baltic seas, and beyond 60 °N where species have never been ob-
served (Fig. 4, left panels). By increasing ESI values from+0.4 to +0.6,
environmental filtration also emphasised regions known to be highly
suitable for SPF species, but in which occurrences were only scarcely
available (e.g. in the eastern Mediterranean Sea for Atlantic horse
mackerel, round sardinella and bogue; Fig. 4a, f and g).

3.2. Contemporary (1990–2017) environmental suitability of small pelagic
fishes

We then represented the contemporary (1990–2017) spatial dis-
tribution of the seven SPFs in the spatial domain ranging from 10 to 70
°N and from 30 °W to 45 °E (Fig. 4, middle panel) Environmental
suitabilities at the calibration range (i.e. the entire distribution range)
are provided in Supplementary material 6.

According to the observed and modelled distributions (Fig. 4, left
and middle panels), two species groups were identified with respect to
their environmental suitability along the European coasts. The first
group encompassed temperate-to-cold water species (hereafter “tem-
perate-cold” species; i.e. Atlantic horse mackerel, European pilchard,
European sprat and European anchovy; Fig. 4a–d) that were more likely
to be present in northern Europe. The second grouped temperate-to-
warm water species (hereafter “temperate-warm” species; i.e. Medi-
terranean horse mackerel, round sardinella and bogue; Fig. 4e–g) lo-
cated along the Mediterranean coasts down, to North Africa.

The four temperate-cold species showed the highest ESI values in
the North Sea, in the Celtic Sea, in the Bay of Biscay (ESI values> 0.8)
and to a lesser extent along Norwegian coasts (ESI values ranging from
0.2 to 0.8). For all temperate-cold species, but European pilchard, high
ESI values (from 0.4 to 0.8) were expected in the western and central
regions of the Baltic Sea (Fig. 4), suggesting that these species can
tolerate a wide salinity range (from 8 to 38) and a high thermal
variability (up to 20 °C annual range). All temperate-cold species, but
European sprat, showed high ESI values (from 0.6 to 0.8) in the north-
western part of the Mediterranean basin (Fig. 4). For all temperate-cold
species, the modelled ESIs are in accordance with the observation data
except in southern Iceland, western Norway and to a lesser extent in the
eastern Black Sea where positive ESI values (between 0.05 to 0.6) are
predicted while no observed distribution is available.

The three temperate-warm species showed the highest ESI values
(from 0.4 to 0.8) in nearly all the regions of the Mediterranean Sea and
medium to low ESI values (from 0.2 to 0.7) in the Black Sea and along
the north-western African coasts. However, some discrepancies among
species were detected (Fig. 4). Round sardinella appears as the most
southern SPF species with no suitable conditions north of the Portu-
guese coast. On the contrary, Mediterranean horse mackerel and bogue
showed high ESI values (from 0.6 to 0.8) along the Atlantic coasts from
the Celtic sea down to northern Africa, up to 0.8 in the Bay of Biscay.
While bogue showed maximum ESI values (> 0.8) in the whole Med-
iterranean Sea, only the north-western regions of the Mediterranean Sea
were highly suitable for Mediterranean horse mackerel and round

Table 2
Environmental parameters and SDMs selected by our procedure.

Mediterranean horse mackerel Parameters: SST, SSTvar, log_PP
Models: GLM, RF, NPPEN
CBI (mean): 0.71

Atlantic horse mackerel Parameters: SST, SSTvar, log_PP
Models: GLM, NPPEN
CBI (mean): 0.95

European pilchard Parameters: SST, SSTr, SSS
Models: GLM, GAM, NPPEN
CBI (mean): 0.75

Round sardinella Parameters: SST, SSTr, log_PP
Models: GLM, RF, FDA, NPPEN
CBI (mean): 0.88

European sprat Parameters: SST, SSTr, log_PP
Models: GLM, MARS, NPPEN
CBI (mean): 0.92

European anchovy Parameters: SST, SSTvar, SSS
Models: GLM, FDA, MARS
CBI (mean): 0.88

Bogue Parameters: SST, SSTr
Models: GLM, ANN, NPPEN
CBI (mean): 0.65

The selected SDMs had a CBI>0.5 and satisfying response curves.
Parameters: (SST) Sea Surface Temperature, (SSTr) annual range of Sea
Surface Temperature, (SSTvar) monthly variance of Sea Surface Temperature,
(log_PP) log-transformed Primary Production and (SSS) Sea Surface Salinity.
Models: (GLM) Generalised Linear Model, (GAM) Generalised Additive Model,
(GBM) Generalised Boosting Model, (ANN) Artificial Neural Network, (FDA)
Flexible Discriminant Analysis, (MARS) Multiple Adaptive Regression Splines,
(RF) Random Forest and (NPPEN) Non Parametric Probabilistic Ecological
Niche model.
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Fig. 4. Contemporary (1990–2017) observed distribution (left panels), modelled environmental suitability index (0–1, middle panels) and its associated standard
deviation (0–1, based on all validated SDMs and cross-validation runs, right panels) for (a) Atlantic horse mackerel, (b) European pilchard, (c) European sprat, (d)
European anchovy, (e) Mediterranean horse mackerel, (f) round sardinella and (g) bogue.
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sardinella. The modelled ESIs are in accordance with the observation
data except in the North Sea for Mediterranean horse mackerel and
Bogue and to a lesser extent in the eastern Black Sea for all temperate-
warm species. These regions highlight positive ESI values (between
0.05 and 0.6) while no observations are available. These discrepancies
may result from an absence of sampling in these regions or external
factors hindering species establishment despite suitable environmental
conditions.

3.3. Model uncertainties

Two main sources of uncertainties in projected species distributions
were considered in our study: (i) biological uncertainties, related to the
quality of occurrence datasets and (ii) numerical uncertainties, inherent
to the selection of different modelling algorithms (Pearson et al., 2006;
Buisson et al., 2010). Standard deviations (SD) – computed, for each
species, from outputs that originated from both selected algorithms and
cross-validation runs – ranged from 0.1 to 0.4, indicating a convergence
between models (Fig. 4, right panels). The lowest SD values (close to
0.2) were found in the north-western Mediterranean Sea for virtually all
SPFs, and in the Bay of Biscay and in the North Sea when temperate-
cold species were studied (Fig. 4, a–d). The highest SD values (close to
0.4) were observed in the Mediterranean Sea for Mediterranean horse
mackerel, European pilchard and round sardinella (Fig. 4, e–g). For all
species, the coefficient of variation (CV; Supplementary material 7)
highlighted very low CV variations (< 20 %) towards their centre of
distribution (in the Mediterranean Sea for all species and North Sea for
temperate-cold species) while showing high variations at the leading or
the trailing edge of their distribution (up to 100 % in the Black, Baltic
and the Norwegian seas).

4. Discussion

By combining several numerical techniques such as the convex hull
method, the ensemble models approach and an examination of species
response curves in a comprehensive modelling framework, we modelled
the contemporary (1990–2017) environmental suitability of seven of
the most commercially and ecologically important European small pe-
lagic fish. By relying on both an understanding of the ecological re-
quirements of species and on the use of innovative statistical tools, our
framework allowed us to focus only on the best models, to improve the
way species distribution modelling is carried out, and therefore to
produce more robust ecological scenarios.

At a macroecological level, thermal-induced effects have been fre-
quently related to latitudinal mean temperature gradients (Angilletta,
2011). While our analysis showed that mean temperature (SST) had a
major influence on species distributions, we also revealed the key role
of temperature seasonality (SSTr) and short-term temperature varia-
tions (SSTvar) in shaping distributional ranges (Table 2). Small pelagic
fishes are marine ectotherms, that mainly depend on external heat
sources, their body temperature being directly controlled by environ-
mental conditions directly (Checkley et al., 2009). Changes in tem-
perature may therefore affect SPFs’ physiological performances (i.e.
their fitness; Perry et al., 2005; Payne et al., 2016). Because the re-
lationship between temperature and fitness occurred through species’
thermal optimum and range, and because SPFs are short lifespan spe-
cies (Checkley et al., 2009), annual temperature changes may affect
several life stages (especially reproduction and larval development; e.g.
Peck et al., 2013), with long-term consequences on population dy-
namics (Fréon et al., 2005). Small pelagic fishes may also experience
ontogenetic shifts in thermal tolerance during their development (Peck
et al., 2013) and temperature seasonality (here SSTr) may either favour
or perturb species development, with potential consequences on dis-
tributional patterns (Fig. 4, middle panels; Peck et al., 2013). This is
especially noticeable in regions characterised by an important thermal
variability, such as in the Black and Azov seas, in the Northern Adriatic

Sea, in the Baltic Sea and to a lesser extent in the eastern part of the
North Sea. Considering thermal variability in SDMs (e.g. the monthly
SST variance) may therefore help to better define species environ-
mental suitability and to minimise the risk of over-prediction at the
leading and the trailing edges of their distributions (Lenoir et al., 2011).

When used in distribution modelling, regression-based algorithms
such as GLM, are known to be rather sensitive to environmental sam-
pling bias, which may induce type I errors (i.e. false positive), with
consequences on projected species environmental suitability (Araújo
and Guisan, 2006; Dormann et al., 2007). However, as for many other
species (e.g. Boakes et al., 2010), commonly available databases of SPFs
provide a distorted view of their actual distribution because of spatial
and temporal bias in species observations (e.g. Beck et al., 2014). When
the time comes to evaluate the quality of biodiversity datasets, three
major issues have been raised in the literature (e.g. Kramer‐Schadt
et al., 2013; Guillera‐Arroita et al., 2015): the influence of (i) pre-
valence, i.e. the proportion of sites in which the species was recorded as
present, (ii) imperfect species detection and (iii) sampling bias. Despite
an increasing availability of information, the biogeographic distribution
of most species remain still frequently incomplete (Bini et al., 2006); a
shortcoming explained, inter alia, by heterogeneous sampling effort
among surveys, or the inaccessibility of some areas. For all SPF datasets,
this effect is undeniable when comparing the north-western Medi-
terranean Sea, the Bay of Biscay, the North Sea with other European
regions. (Fig. 4, left panels). To lower this issue, a plethora of data
sources (e.g. standardised scientific surveys, biodiversity portals) are
now available in collaborative databases (e.g. GBIF), offering more
cohesive summaries of species’ distributions although leading – some-
times – to enhanced spatial and environmental biases (Kramer‐Schadt
et al., 2013; Beck et al., 2014). Considering independent distributional
data (i.e. from private collections or from the literature; Beck et al.,
2013) along with the associated pre-processing (e.g. Kramer‐Schadt
et al., 2013; Varela et al., 2014; Aiello‐Lammens et al., 2015; Fithian
et al., 2015), can contribute to cover the ecological niches of species
more comprehensively and to improve model accuracy. By coupling
these procedures with our restricting convex hull pseudo-absence se-
lection, we (i) assigned the same weight to environmental conditions
independently of the observation density (i.e. alleviating observation
sampling bias), (ii) lowered the weight of presence records at the dis-
tribution edge (i.e. avoiding the risk of over-prediction) and (iii) se-
lected unbiased pseudo-absence (i.e. independent of the observation
bias).

Applying environmental filtering and the restricted convexhull
pseudo-absence selection method resulted in ensemble models char-
acterised by a reduced ESI in over-sampled areas and an increased ESI
in undersampled areas. Our results are consistent with our expectations
and in line with previous studies that suggested that random generation
of pseudo-absences and/or a selection process based on geographical
criterion may lead to lower predictability (e.g. Wisz and Guisan, 2009;
Hattab et al., 2014). Although real absences lead to higher model ac-
curacy (Wisz and Guisan, 2009), they are rarely available (Boakes et al.,
2010) and determining the location of pseudo-absences on the basis of a
statistical analysis such as the convex hull is a reliable alternative
(Hattab et al., 2013). Finally, our approach limits spurious species re-
sponse curves (i.e. overfitted or bimodal curves; Supplementary mate-
rial 4) and decreases the risk of over-predictions towards the edge of the
species range. We acknowledge that we may have slightly under-
predicted the European pilchard distribution in Kattegat (i.e. strait be-
tween Denmark and Sweden); the high amount of occurrence records
slightly outside the modelled distribution in this region may have
biased the calculation of the CBI. Despite the well-known robustness of
this index (Breiner et al., 2015; Faillettaz et al., 2019), our result
highlight that no evaluation metric is optimal and that both comparison
between observed and modelled distributions and examination of spe-
cies responses curves are essential for assessing the reliability of model
outputs.

A. Schickele, et al. Ecological Modelling 416 (2020) 108902

8



While the assessment of the environmental suitability for a given
species may differ – slightly or markedly – from one SDM to another
(Pearson et al., 2006; Buisson et al., 2010), it is still challenging to
identify the most appropriate model (see discussion in Buisson et al.,
2010). Even if several methods have been recently proposed, no con-
sensus has emerged (see discussion in Leroy et al., 2018) and the use of
different – well-fitted and evaluated – SDMs may help to better simulate
potential species distributions, for past, contemporary and future en-
vironmental conditions (Araújo and New, 2007). In complementarity
with a multi-SDM approach, we think that researchers should examine
species response curves during the evaluation process (e.g. Elith and
Leathwick, 2009; Jarnevich et al., 2018; Erauskin-Extramiana et al.,
2019). As observed for Mediterranean horse mackerel (see details in
Supplementary material 4), we invalidated response curves that were
statistically significant but not in agreement with the ecological niche
theory. Without this complementary evaluation method, the corre-
sponding algorithms would have been considered in the ensemble
model, therefore potentially resulting in spurious patterns of ESIs.
Therefore, this multi-criteria evaluation procedure is of great interest
from a (i) numerical (i.e. metric adapted to presence-only datasets) and
an ecological (i.e. validation of the species-environment relationships)
perspective. Note that the seven SPFs we chose are representative of a
large spectrum of environmental conditions, from temperate-to-cold
waters (e.g. European sprat) to temperate-to-warm waters (e.g. bogue
and round sardinella).To conclude, our framework has been faced with
a wide range of environmental conditions, allowing us to better eval-
uate its robustness, sensitivity and possible transferability to other
species and ecosystems.

In this work, we have estimated species’ potential niche and not the
realised niche (Soberón and Nakamura, 2009). We caution that addi-
tional environmental parameters, biological interactions and species
life traits (e.g. dispersal abilities) may explain why we detected en-
vironmentally suitable conditions in regions where SPFs were not ob-
served (e.g. the Norwegian Sea; Pulliam, 2000; Pearman et al., 2008).
Considering the role of biotic interactions in shaping species distribu-
tions (Chaalali et al., 2016) would improve the reliability of SDMs
outputs by better estimating and simulating the realised niche of species
(Wisz et al., 2013; Louthan et al., 2015). Including dispersal mechan-
isms while accounting for oceanic currents and physical barriers after
the potential distribution modelling step may help to refine the dis-
tributional range of species (Engler and Guisan, 2009). These ap-
proaches require an exhaustive ecological understanding of the inter-
action process at a macroecological scale and a deep knowledge of
species life traits to implement metrics that simulate the ability of
species to disperse (e.g. Petitgas et al., 2012). Moreover, it is important
to notice that no direct correlations between ESI (potential or realised)
and spatialised biomass or official catches have been established in the
literature although temporal correlations have been suggested however
(e.g. Chaalali et al., 2016). Therefore, discrepancies between SPF’s ESI,
biomass and official catches (e.g. FAO, 2016) may be explained by
population-related parameters (e.g. recruitment, growth, biotic inter-
action) or management policies and stock status (e.g. under or over-
fishing), respectively. Finally, inter-specific absolute ESI comparison is
challenging because of the monospecific nature of SDMs.

Our study presents a detailed environmental suitability assessment
of seven of the most heavily harvested European SPFs. By focusing on
the most common sources of errors and uncertainties in SDMs, we de-
signed a comprehensive - fully transferable to other species and eco-
systems - modelling framework which is intended to elaborate more
robust ecological scenarios. Our framework addressed several critical
steps in SDMs, i.e. the treatment of sampling biases in observation re-
cords, the generation relevant pseudo-absences and a dual assessment
of model outputs that proposes to evaluate models from both a nu-
merical and an ecological perspective. In a conservation decision-
making perspective, these different steps are essential to increase con-
fidence in SDMs, a prerequisite to propose effective resource

management measures (e.g. accounting for environmental stress) or to
measure the effectiveness of protected areas (e.g. regarding environ-
mental resilience). Moreover, when used in combination with scenarios
of future environmental conditions (i.e. IPCC climate scenarios), this
framework provides robust contemporary predictions to assess possible
changes in species distribution in the context of global climate change.
Despite the growing literature on the development and testing of new
modelling and evaluation processes, the use of SDMs in quantitative
resource management and scientific surveys is still a great challenge.
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